网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
矩阵
与
相似的充分必要条件为


A.Aa=0,b=2
B.a=0,b为任意常数.
C.a=2,b=0
D.a=2,6为任意常数
B.a=0,b为任意常数.
C.a=2,b=0
D.a=2,6为任意常数
参考答案
参考解析
解析:两个实对称矩阵相似的充分必要条件是有相同的特征值.
因为
由λ=2必是A的特征值,即|2E-A|=2[2^2-2(b+2)+2b-2a^2]=0,故必有a=0.
由λ=b必是A的特征值,即|bE-A|=b[b^2-(b+2)b+2b]=0,b可为任意常数.
所以选(B).

因为

由λ=2必是A的特征值,即|2E-A|=2[2^2-2(b+2)+2b-2a^2]=0,故必有a=0.
由λ=b必是A的特征值,即|bE-A|=b[b^2-(b+2)b+2b]=0,b可为任意常数.
所以选(B).
更多 “矩阵与相似的充分必要条件为 A.Aa=0,b=2 B.a=0,b为任意常数. C.a=2,b=0 D.a=2,6为任意常数” 相关考题
考题
相似第三定理是:如果相似指标为1或相似判据相等且其它单值条件(边界条件、初始条件等)相同,则两现象必相似。相似第三定理是相似的()。
A、必要条件B、充分条件C、判据存在定理D、充分必要条件
考题
设A是n阶矩阵,下列结论正确的是().A.A,=B都不可逆的充分必要条件是AB不可逆
B.r(A)}C.AX==与BX=0同解的充分必要条件是r(A)=r(B)
D.A~B的充分必要条件是λE-A~λE-B
考题
单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的( )。A
充分非必要条件B
必要非充分条件C
充分必要条件D
既非充分也非必要条件
考题
单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的( )。A
充分非必要条件B
必要非充分条件C
充分必要条件D
既非充分也非必要条件
热门标签
最新试卷