网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

如果 A 是严格对角优势的三对角矩阵,则用追赶法可解以 A 为系数矩阵的方程组。 ()


参考答案和解析
正确
更多 “如果 A 是严格对角优势的三对角矩阵,则用追赶法可解以 A 为系数矩阵的方程组。 ()” 相关考题
考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 如果线性方程组的系数矩阵满秩,则该方程组一定有解组,且解是唯一的。() 此题为判断题(对,错)。

考题 如果线性方程组的系数矩阵满秩则该方程组一定有解且解是唯一的。() 此题为判断题(对,错)。

考题 有向图的邻接矩阵是一个()。 A、对称矩阵B、下三角矩阵C、上三角矩阵D、对角矩阵

考题 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。()

考题 什么是线性方程组的系数矩阵和增广矩阵?

考题 用高斯顺序消去法解线性方程组,消元能进行到底的充分必要条件是线性方程组的系数矩阵的各阶顺序主子式均不为0()

考题 完全由无源元件及独立源所组成的网络所得到的方程组的系数矩阵是()。 A、对称矩阵B、非对称矩阵C、对角阵D、单位矩阵

考题 若采用邻接矩阵法存储一个n个顶点的无向图,则该邻接矩阵是一个( )。A.上三解矩阵B.稀疏矩阵C.对角矩阵D.对称矩阵

考题 设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:

考题 设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆 B.矩阵A的迹为零 C.特征值-1,1对应的特征向量正交 D.方程组AX=0的基础解系含有一个线性无关的解向量

考题 非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组A-6有解. B.r=n时,方程组Ax=b有唯一解. C.m=n时,方程组Ax=b有唯一解. D.r

考题 都是线性方程组Ax=0的解,则矩阵A为:

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

考题 利用逆矩阵,解线性方程组

考题 设,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B

考题 设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.

考题 设A=,E为三阶单位矩阵.   (Ⅰ)求方程组Ax=0的一个基础解系;   (Ⅱ)求满足AB=E的所有矩阵B.

考题 设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

考题 若线性代数方程组AX=b的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都()。

考题 ()属于特殊矩阵。A、对角矩阵B、上三角矩阵C、下三角矩阵D、稀疏矩阵E、对称矩阵

考题 单选题求解线性方程组的平方根法,要求其系数矩阵为( )。A 三对角矩阵B 上三角矩阵C 对称正定矩阵D 各类大型稀疏矩阵

考题 单选题对于系数为正定对称矩阵的线性方程组,其最佳求解方法为( )A 追赶法B 平方根法C 迭代法D 高斯主元消去法)

考题 单选题求解线性方程组的追赶法,要求其系数矩阵为( )。A 三对角矩阵B 上三角矩阵C 对称正定矩阵D 各类大型稀疏矩阵

考题 填空题若线性代数方程组AX=b的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都()。

考题 单选题求解线性方程组的高斯主元消去法的条件为( )。A 三对角矩阵B 上三角矩阵C 对称正定矩阵D 各类大型稀疏矩阵

考题 问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。