网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
服从二项分布的随机变量是n个独立同为两点分布的随机变量之和
参考答案和解析
×
更多 “服从二项分布的随机变量是n个独立同为两点分布的随机变量之和” 相关考题
考题
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为()。
A、n=4,p=0.6B、n=6,p=0.4C、n=4,p=0.3D、n=24,p=0.1
考题
关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B.几个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X近似服从正态分布N(μ,σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X仍为正态分布,其均值不变仍为μ,方差为σ2/n
考题
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n、p分别为( )。
A.n=4,p=06
B.n=24,p=144
C.n=6,p=04
D.n=6,p=06
考题
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p分别是:
A. n=4,p=0. 6
B. n=6,p=0.4
C. n=8,p=0.3
D.n=24,p=0. 1
考题
关于中心极限定理,下列说法正确的是( )。
A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布
B. n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值
近似服从正态分布N(μ, σ2/n)
C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值的分布总近似于正态分布
D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ, σ2)则样本均值仍为正态分布,其均值不变仍为μ,方差为 σ2/n
考题
把一颗均匀骰子掷了6次,假定各次出现的点数相互不影响,随机变量X表示出现6点的次数,则X服从().A、参数n=6,p=1/2的二项分布B、参数n=1,p=1/6的二项分布C、参数,n=6,p=1/6的二项分布D、非二项分布
考题
多元线性回归分析中,要求的条件有()。A、应变量y是服从正态分布的随机变量B、自变量间相互独立C、残差是均数为0,方差为常数、服从正态分布的随机变量D、残差间相互独立,且与p个自变量之间独立E、自变量均服从正态分布
考题
已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n,p的值为()。A、n=4,p=0.6B、n=6,p=0.4C、n=8,p=0.3D、n=24,p=0.1
考题
关于中心极限定理的描述正确的是:()。A、对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B、正态样本均值服从分布N(μ,σ2/n)C、设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D、无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布
考题
单选题关于中心极限定理,下列说法正确的是( )。A
多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B
n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X—近似服从正态分布N(μ,σ2/n)C
无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X—的分布总近似于正态分布D
设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X—仍为正态分布,其均值不变仍为μ,方差为σ2/n
考题
填空题设随机变量X服从于参数为(2,p)的二项分布,随机变量Y服从于参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}=____。
热门标签
最新试卷