网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

如果n阶矩阵A有n个不同的特征值,则A一定可以对角化.


参考答案和解析
A可能有n个不同的特征值
更多 “如果n阶矩阵A有n个不同的特征值,则A一定可以对角化.” 相关考题
考题 可对角化的矩阵是____。 A.实对称阵B.有n个相异特征值的n阶阵C.有n个线性无关的特征向量的n阶方阵

考题 若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则() A、A与B相似B、A≠B,但|A-B|=0C、A=BD、A与B不一定相似,但|A|=|B|

考题 n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的()。 A、充分必要条件;B、必要而非充分条件;C、充分而非必要条件;D、既非充分也非必要条件

考题 n阶单位矩阵的特征值都是1。() 此题为判断题(对,错)。

考题 设n阶矩阵A有一个特征值3,则|-3E+A|=_________.

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A为n阶实对称矩阵,则(). A.A的n个特征向量两两正交B.A的n个特征向量组成单位正交向量组C.A的k重特征值λ0,有r(λ0E-A)=n-kD.A的k重特征值λ。,有r(λ0E-A)=k

考题 设A为n阶方阵,则A可对角化的充分必要条件是( ).A. A有n个不同特征值B.A有n个不同特征向量C.A有n个线性元关的特征向量D.IAI≠0。

考题 设A是n阶实对称矩阵,则A有n个()特征值.

考题 设A是n阶矩阵,且E+3A不可逆,则()。 A.3是A的特征值B.-3是A的特征值C.1/3是A的特征值D.-1/3是A的特征值

考题 若n阶矩阵A的任意一行中n个元素的和都是a,则A的一特征值为: A. a B. -a C. 0 D. a-1

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n) B.A的所有特征值非负 C. D.秩(A)=n

考题 设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量

考题 已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:

考题 若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( ) A.A与B相似 B. C.A=B D.A与B不一定相似,但|A|=|B|

考题 若n阶矩阵A的任意一行中n个元素的和都是a,则A的一特征值为: A. a B.-a C. 0 D. a-1

考题 设A,B为n阶矩阵.   (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.

考题 已知3阶矩阵有一个二重特征值,求a,并讨论A可否对角化。

考题 试证:如果A,B都是n阶正定矩阵,则A+B也是正定的

考题 设n阶矩阵A 满足,其中s≠t,证明A可对角化

考题 设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

考题 单选题已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是(  )。[2012年真题]A 2/λ0B λ0/2C 1/(2λ0)D 2λ0