网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

8、设A是3级矩阵,特征值是1,2,3,则A+2E的特征值为多少?


参考答案和解析
3,4,5
更多 “8、设A是3级矩阵,特征值是1,2,3,则A+2E的特征值为多少?” 相关考题
考题 设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为()。 A、3,5B、1,2C、1,1,2D、3,3,5

考题 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=1。() 此题为判断题(对,错)。

考题 设n阶矩阵A有一个特征值3,则|-3E+A|=_________.

考题 设A是n阶实对称矩阵,则A有n个()特征值.

考题 设A是n阶矩阵,且E+3A不可逆,则()。 A.3是A的特征值B.-3是A的特征值C.1/3是A的特征值D.-1/3是A的特征值

考题 设是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为: A.3 B.4 C. D.1

考题 若A是实对称矩阵,则A的特征值全为实数

考题 已知方阵A满足|A+2E|=0,则A必定有特征值( ).A.1 B.2 C.-1 D.-2

考题 设A是n阶矩阵,且Ak=O(k为正整数),则( )。A.A一定是零矩阵 B.A有不为0的特征值 C.A的特征值全为0 D.A有n个线性无关的特征向量

考题 若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正

考题 已知n阶可逆矩阵A的特征值为λ0,则矩阵(2A)-1的特征值是:

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是: A. Pa B. P-1A C. PTa D.(P-1)Ta

考题 设λ=1/2是非奇异矩阵A的特征值,则矩阵(2A3)-1有一个特征值为: A. 3 B.4 C.1/4 D. 1

考题 设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设A是三阶矩阵,有特征值是A的伴随矩阵,E是三阶单位阵,则

考题 设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ^2是λ^3的特征值,X为特征向量,若A^2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是( )。 A. α是矩阵-2A的属于特征值-2λ的特征向量 D. α是矩阵AT的属于特征值λ的特征向量

考题 设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A、α是矩阵-2A的属于特征值-2λ的特征向量B、α是矩阵的属于特征值的特征向量C、α是矩阵A*的属于特征值的特征向量D、α是矩阵AT的属于特征值λ的特征向量

考题 设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A、25B、12.5C、5D、2.5

考题 已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A、β是A的属于特征值0的特征向量B、α是A的属于特征值0的特征向量C、β是A的属于特征值3的特征向量D、α是A的属于特征值3的特征向量

考题 已知方阵A满足|A+2E|=0,则A必定有特征值().A、1B、2C、-1D、-2

考题 单选题设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。A α是矩阵-2A的属于特征值-2λ的特征向量B α是矩阵的属于特征值的特征向量C α是矩阵A*的属于特征值的特征向量D α是矩阵AT的属于特征值λ的特征向量

考题 单选题已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。A β是A的属于特征值0的特征向量B α是A的属于特征值0的特征向量C β是A的属于特征值3的特征向量D α是A的属于特征值3的特征向量

考题 单选题设3阶方阵A有特征值2,且已知|A|=5,则A的伴随矩阵必有特征值().A 25B 12.5C 5D 2.5

考题 单选题(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()A PαB P-1αC PTαD (P-1)Tα