网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
要使齐次线性方程组



有非零解,则a应满足(  )。

A. -2<a<1
B. a=1或a=-2
C. a≠-1且a≠-2
D. a>1

参考答案

参考解析
解析:齐次线性方程组的系数矩阵作初等变换如下



要使齐次线性方程组有非零解,则矩阵的秩r<3,因此得a-1=0或-(a+2)(a-1)=0,计算得a=1或a=-2。
【说明】n元齐次线性方程组Ax=0有非零解的充要条件是r(A)<n。
更多 “要使齐次线性方程组 有非零解,则a应满足(  )。 A. -2<a<1 B. a=1或a=-2 C. a≠-1且a≠-2 D. a>1 ” 相关考题
考题 设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A、η1+η2是Ax=0的一个解B、(1/2)η1+(1/2)η2是Ax=b的一个解C、η1-η2是Ax=0的一个解D、2η1-η2是Ax=b的一个解

考题 设u1,u2是非齐次线性方程组Ax=b的两个解,若c1u1+c2u2也是方程组Ax=b的解,则()。 A、c1+c2=1B、c1=c2C、c1+c2=0D、c1=2c2

考题 设u1,u2是非齐次线性方程组Ax=b的两个解,若c1u1-c2u2是其导出组Ax=o的解,则有()。 A、c1+c2=1B、c1=c2C、c1+c2=0D、c1=2c2

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

考题 设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 问取何值时 非齐次线性方程组, (1)有唯一解 (2)无解 (3)有无穷多个解,并在无穷多个解时,求方程组的通解

考题 已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

考题 取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。

考题 设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解

考题 问:齐次线性方程组有非零解时,a,b必须满足什么条件?

考题 齐次线性方程组只有零解,则有( )。A、a-b=1 B、a=1且a=2 C、a≠1且b≠2 D、a≠1或b≠2

考题 要使齐次线性方程组 有非零解,则a应满足(  )。 A. -2<a<1 B. a=1或a=-2 C. a≠-1且a≠-2 D. a>1

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系 B.k1ξ1+k1ξ2是Ax=0的通解 C.k1ξ1+ξ2是Ax=0的通解 D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

考题 已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).A.x=k1(η-η2)+η3 B.x=k1η1+k2η2+η3 C.x=k1η1+k2η2+k3η3 D.x=k1(η+η2)+η3

考题 设B是3阶非零矩阵,已知B的每一列都是方程组的解,则t等于( )。 A. 0 B. 2 C. -1 D. 1

考题 已知非齐次线性方程组有无限多个解,则t等于().A、-1B、1C、4D、-1或4

考题 齐次线性方程组的基础解系为()。A、α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB、α1=(2,1,0,1)T,α2=(-1,-1,0)TC、α1=(1,1,1,0)T,α2=(1,0,0,1)TD、α1=(2,1,0,1)T,α2=(-2,-1,0,1)T

考题 填空题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是____。

考题 单选题设函数y1(x)、y2(x)、y3(x)线性无关,且都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,又c1与c2为任意常数,则该非齐次线性方程的通解可表示为(  )。A c1y1+c2y2+y3B c1y1+c2y2-(c2+c1)y3C c1y1+c2y2-(1-c1-c2)y3D c1y1+c2y2+(1-c1-c2)y3

考题 单选题设n元齐次线性方程组AX(→)=0(→),秩(A)=n-3,且α(→)1,α(→)2,α(→)3为其3个线性无关的解,则(  )为其基础解系。A α(→)1+α(→)2,α(→)2+α(→)3,α(→)1+α(→)3B α(→)1-α(→)2,α(→)2-α(→)3,α(→)3-α(→)1C α(→)1+α(→)2+α(→)3,α(→)3-α(→)2,α(→)1+2α(→)3D α(→)1-α(→)2,2α(→)2-3α(→)3,3α(→)3-2α(→)1

考题 单选题齐次线性方程组的系数矩阵记为A。若存在三阶矩阵B≠0使得AB=0,则(  )。A λ=-2且|B|=0B λ=-2且|B|≠0C λ=1且|B|=0D λ=1且|B|≠0

考题 单选题已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。A k1α(→)1+k2(α(→)1+α(→)2)+(β(→)1-β(→)2)/2B k1α(→)1+k2(α(→)1-α(→)2)+(β(→)1+β(→)2)/2C k1α(→)1+k2(β(→)1+β(→)2)+(β(→)1-β(→)2)/2D k1α(→)1+k2(β(→)1-β(→)2)+(β(→)1+β(→)2)/2

考题 单选题齐次线性方程组的基础解系为()。A α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB α1=(2,1,0,1)T,α2=(-1,-1,0)TC α1=(1,1,1,0)T,α2=(1,0,0,1)TD α1=(2,1,0,1)T,α2=(-2,-1,0,1)T

考题 单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为(  )。[2014年真题]A x=k1(α1-α2)+k2(α1+α3)+α1B x=k1(α1-α3)+k2(α2+α3)+α1C x=k1(α2-α1)+k2(α2-α3)+α1D x=k1(α2-α3)+k2(α1+α2)+α1

考题 单选题已知非齐次线性方程组有无限多个解,则t等于().A -1B 1C 4D -1或4