网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设二次型,(b>0)其中A的特征值之和为1, 特征值之积为-12.(1) 求a,b. (2) 用正交变换化为标准型


参考答案

参考解析
解析:
更多 “设二次型,(b>0)其中A的特征值之和为1, 特征值之积为-12.(1) 求a,b. (2) 用正交变换化为标准型” 相关考题
考题 设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为()。 A、3,5B、1,2C、1,1,2D、3,3,5

考题 设A为三阶方阵,其特征值为1,-1,2,则A^2的特征值为1,1,4。() 此题为判断题(对,错)。

考题 设 2 是方阵 A 的特征值,则必有特征值 A.0 B.1 C.-1 D.以上都不对

考题 设是非奇异矩阵A的特征值,则矩阵(2A3)- 1有一个特征值为: A.3 B.4 C. D.1

考题 二次型用正交变换化成的标准型为( )

考题 设λ=1/2是非奇异矩阵A的特征值,则矩阵(2A3)-1有一个特征值为: A. 3 B.4 C.1/4 D. 1

考题 设二次型. (Ⅰ)求二次型的矩阵的所有特征值; (Ⅱ)若二次型的规范形为,求的值

考题 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,1,1)′,求A

考题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,   对应特征向量为(-1,0,1)^T.   (1)求A的其他特征值与特征向量;   (2)求A.

考题 用配方法把二次型化为标准型,并求所作变换

考题 已知二次型可用正交变换化为.求a,并且作实现此转化的正交变换

考题 设实对称阵A的特征值为0,2,2,且对应特征值2的两个特征向量为与,求.

考题 设二次型   (b>0),   其中二次型的矩阵A的特征值之和为1,特征值之积为-12.   (1)求a,b的值;   (2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.

考题 已知二次型的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解

考题 已知二次型经过正交变换化为标准型,求参数a,b及所用的正交变换矩阵

考题 设二次型,(b>0)其中A的特征值之和为1, 特征值之积为-12.(1) 求a,b. (2) 用正交变换化为标准型

考题 二次型, (1)求f(x1,x2,x3)的矩阵的特征值. (2)设f(x1,x2,x3)的规范形为. 求a

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设二次型其中二次型矩阵A的特征值之和为1, 特征值之积-12.(1) 求a,b的值; (2) 求一正交变换把二次型化成标准型(需写出正交变换及标准型)

考题 设二次型f(x1,x2,x3)=(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.

考题 已知,二次型的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换将二次型化为标准型

考题 设矩阵A=   (1)已知A的一个特征值为3,试求y;   (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

考题 设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.

考题 设A为三阶实对称矩阵,如果二次曲面方程      在正交变换下的标准方程的图形如图所示,      则A的正特征值的个数为 A.A0 B.1 C.2 D.3

考题 设二次型的正惯性指数p=2,负惯性指数q=0,且可用可逆线性变换x=Cy将其化为二次型(1)求常数a; (2)求可逆线性变换矩阵C

考题 三阶矩阵 为矩阵A的转置,已知r(ATA)=2,且二次型 (1)求a; (2)求二次型对应的二次矩阵,并将二次型化为标准型,写出正交变换过程。

考题 设二次型f(x1,x2,x3)在正交变换为x=py下的标准形为 若Q=(e1-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准型为( )。 A. B. C. D.

考题 单选题设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()A α1-α2是A的属于特征值1的特征向量B α1-α3是A的属于特征值1的特征向量C α1-α3是A的属于特征值2的特征向量D α1+α2+α3是A的属于特征值1的特征向量