网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
解非线性方程f(x)=0的牛顿迭代法具有()收敛。
参考答案
更多 “解非线性方程f(x)=0的牛顿迭代法具有()收敛。” 相关考题
考题
牛顿-拉夫逊迭代法的基本原理是用泰勒级数展开非线性方程组,略去二阶及以上的高阶项得到线性修正方程组,通过一次求解修正方程组和修正未知量就可得到未知量的精确解。()
此题为判断题(对,错)。
考题
用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A、f(x0)f″(x)0B、f(x0)f′(x)0C、f(x0)f″(x)0D、f(x0)f′(x)0
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f″(x)+f(x)=0B
f′(x)+f(x)=0C
f″(x)+f′(x)=0D
f″(x)+f′(x)+f(x)=0
考题
单选题若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是( ).A
曲线C的方程是f(x,y)=0B
以方程f(x,y)=0的解为坐标的点都在曲线C上C
方程f(x,y)=0的曲线是CD
方程f(x,y)=0表示的曲线不一定是C
考题
单选题用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A
f(x0)f″(x)0B
f(x0)f′(x)0C
f(x0)f″(x)0D
f(x0)f′(x)0
考题
单选题用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。A
y=φ(x)与x轴交点的横坐标B
y=x与y=φ(x)交点的横坐标C
y=x与x轴的交点的横坐标D
y=x与y=φ(x)的交点
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f′(x)+f(x)=0B
f′(x)-f(x)=0C
f″(x)+f(x)=0D
f″(x)-f(x)=0
热门标签
最新试卷