网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

6、由于非正弦周期电压、电流有可能存在波形对称性。利用(),可以使非正弦周期函数在其傅里叶级数展开过程中,将傅里叶系数的计算简化。


参考答案和解析
错误
更多 “6、由于非正弦周期电压、电流有可能存在波形对称性。利用(),可以使非正弦周期函数在其傅里叶级数展开过程中,将傅里叶系数的计算简化。” 相关考题
考题 非正弦周期信号的分解可用什么方法实现:()A.傅里叶变化;B.傅里叶变换;C.傅里叶级数展开;D.傅里叶卷积

考题 非正弦周期电流电路采用谐波分析法分析过程中,利用函数的对称性可以大大简化傅里叶系数的运算。()

考题 周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值()A越大B越小C不变D不一定

考题 大多数非正弦周期函数的傅里叶级数都已被算出。()

考题 非正弦周期电流电路稳态分析有2个步骤展开成傅里叶级数和叠加出最后结果。()

考题 傅里叶级数展开中,包含正弦分量,则原信号必为奇函数。() 此题为判断题(对,错)。

考题 设f(x)是周期为2π的周期函数,它在[-π,π]上的表达式为: 若将f(x)展开成傅里叶级数,则该级数在x=-3π处收敛于( )。

考题 某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300πrad/s,则该信号的周期T为( )s。A.50 B.0.06 C.0.02 D.0.05

考题 任意给出几种常见的非正弦周期信号波形图,能否确定其傅里叶级数展开式中有无恒定量?( )A.不能 B.能 C.不确定 D.分情况讨论

考题 当非正弦函数f(t)满足狄里赫利条件时,可将其展开成傅里叶级数。( )

考题 周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越( )A.大 B.小 C.无法判断

考题 一个非正弦周期信号,利用傅里叶级数展开一般可以分解为( )。A.直流分量 B.基波分量 C.振幅分量 D.谐波分量

考题 关于谐波分析,下列说法正确的是( )A.一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为谐波分析 B.谐波分析的数学基础是傅里叶级数 C.所谓谐波分析,就是对一个已知波形的非正弦周期信号,找出它所包含的各次谐波分量的振幅和频率,写出其傅里叶级数表达式的过程 D.方波的谐波成分中只含有正弦成分的各偶次谐波

考题 周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值( )。A.越大 B.越小 C.无法确定 D.不变

考题 凡是含有非正弦周期电压、电流的电路,就称为非正弦直流电路。

考题 任意给出几种常见的非正弦周期信号波形图,你能否确定其傅里叶级数展开式中有无恒定分量()A、不能B、能C、不确定

考题 一个非正弦周期波可分解为无限多项谐波成分,这个分解的过程称为(),其数学基础是傅里叶级数。

考题 非正弦周期波各次谐波的存在与否与波形的对称性无关。

考题 所谓谐波分析,就是对一个已知()的非正弦周期信号,找出它所包含的各次谐波分量的()和(),写出其傅里叶级数表达式的过程。

考题 周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越()A、大B、小C、无法判断

考题 非正弦周期量作用的电路中,电感元件上的电流波形平滑性比电压差。

考题 周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A、满足狄利赫利条件B、无条件C、必须平均值为零

考题 下面对非正弦电路中叙述正确的是()A、电流按正弦规律变化的电路B、电流按非正弦规律变化的电路C、电流或电压按非正弦规律做周期变化的电路D、电压按非正弦规律做周期变化的电路

考题 对于一个非正弦的周期量,可利用傅里叶级数展开为各种不同频率的正弦分量与直流分量,其中角频率等于ωt的称为基波分量, 角频率等于或大于2ωt的称为高次谐波。

考题 电网中受谐波污染的周期性非正弦量可利用傅利叶级数展开为()与一系列()叠加。

考题 不按正弦规律做周期性变化的电流或电压,称为非正弦周期电流或电压。

考题 单选题周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A 满足狄利赫利条件B 无条件C 必须平均值为零

考题 单选题傅里叶计算是把别的周期函数变成()的计算。A 正切函数B 正弦函数C 一次函数D 二次函数