网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
斐波那契数列f(n)满足的递推关系是()
A.f(n)=f(n-1)+f(n-2)
B.f(n)=f(n-1)-f(n-2)
C.f(n)=2f(n-1)+1
D.f(n)=2f(n-1)-1
参考答案和解析
C
更多 “斐波那契数列f(n)满足的递推关系是()A.f(n)=f(n-1)+f(n-2)B.f(n)=f(n-1)-f(n-2)C.f(n)=2f(n-1)+1D.f(n)=2f(n-1)-1” 相关考题
考题
菲波那契(Fibonacci)数列定义为 f(1)=1,f(2)=1,n2时f(n)=f(n-1)+f(n-2) 据此可以导出,n1时,有向量的递推关系式: (f(n+1),f(n))=f(f(n),f(n-1))A 其中A是2*2矩阵( )。从而,(f(n+1),f(n)=(f(2),f(1))*( )A.B.C.D.A.An-1B.AnC.An+1D.An+2
考题
菲波那契(Fibonacci)数列定义为
f(1)=1,f(2)=1,n>2时f(n)=f(n-1)+f(n-2)
据此可以导出,n>1时,有向量的递推关系式:
(f(n+1),f(n))=f(f(n),f(n-1))A
其中A是2*2矩阵()。从而,f(n+1),f(n)=(f(2),f(1))*(65).A.An-1
B.An
C. An+1
D. An+2
考题
菲波那契(Fibonacci)数列定义为
f(1)=1,f(2)=1,n>2时f(n)=f(n-1)+f(n-2)
据此可以导出,n>1时,有向量的递推关系式:
(f(n+1),f(n))=f(f(n),f(n-1))A
其中A是2*2矩阵(64)。从而,f(n+1),f(n)=(f(2),f(1))*(65).
考题
中世纪数学家比萨的莱奥纳多发现了斐波那契数列,它是这样一组数列:1、1、2、3、5······即后一数字为前面两个数字之和。那么,数列和树木的成长有什么关联呢?由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这段文字意在说明:A.斐波那契数列表现为树本的年轮增长
B.斐波那契数列在自然界中无处不在
C.斐波那契数列在自然中的应用
D.斐波那契数列表明植物在大自然中长期造应和进化
考题
自然界中存在丰富的斐波那契数列,斐波那契数列来源于一个古老的数学问题,是由12世纪意大利数学家斐波那契在其书中所产生的。斐波那契数列和黄金分割的关系是?()A、黄金比例是斐波那契数列中的一项B、斐波那契数列相邻两项的比例逐渐逼近黄金比例C、黄金分割是指用斐波那契数列对一个量进行分割D、黄金比例是斐波那契数列的别名
考题
单选题自然界中存在丰富的斐波那契数列,斐波那契数列来源于一个古老的数学问题,是由12世纪意大利数学家斐波那契在其书中所产生的。斐波那契数列和黄金分割的关系是?()A
黄金比例是斐波那契数列中的一项B
斐波那契数列相邻两项的比例逐渐逼近黄金比例C
黄金分割是指用斐波那契数列对一个量进行分割D
黄金比例是斐波那契数列的别名
考题
单选题如果要推广斐波那契数列,最应该关注的是数列的()。A
表达公式B
递推关系C
第一项D
第二项
热门标签
最新试卷