网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

用迭代法解线性方程组时,迭代法是否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。()


参考答案和解析
即使不考虑舍入误差的影响,一般情况下得到的也是近似解
更多 “用迭代法解线性方程组时,迭代法是否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。()” 相关考题
考题 矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。() 此题为判断题(对,错)。

考题 逆幂法是求实方阵按模最小的特征值与特征向量的反迭代法。()

考题 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。()

考题 迭代法主要有()种A、高斯-赛德尔迭代法B、超松弛迭代法C、雅可比迭代法D、低松弛地代法

考题 使用迭代法的关键问题是其收敛性与收敛速度,收敛性与迭代初值的选取有关。()

考题 线性方程组的数值解法有哪几类A、直接法B、迭代法C、间接法D、递归法

考题 解非线性方程f(x)=0的牛顿迭代法在重根附近() A、线性收敛B、三次收敛C、平方收敛D、不收敛

考题 线性方程组的数值解法有:直接法和迭代法。() 此题为判断题(对,错)。

考题 运用牛顿-拉夫逊迭代法时应使选择的初值()。 A、不等于精确解B、远大于精确解C、接近精确解D、远小于精确解

考题 线性方程组的解法大致可以分为()A、直接法和间接法B、直接法和替代法C、直接法和迭代法D、间接法和迭代法

考题 设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 已知非齐次线性方程组 有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A的秩; (Ⅱ)求的值及方程组的通解

考题 在数值分析中,迭代解法主要包括:Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。

考题 设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?

考题 工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;对不定步数问题,用迭代法求解,有()迭代法和()迭代法两种方法。

考题 对于迭代法xn+1=φ(x),(n=0,1,...)初始近似x0,当|φ′(x0)|1时为什么还不能断定迭代法收敛?

考题 解非线性方程f(x)=0的牛顿迭代法具有()收敛。

考题 判断题在数值分析中,迭代解法主要包括:Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。A 对B 错

考题 单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余列向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 填空题解非线性方程f(x)=0的牛顿迭代法具有()收敛。

考题 单选题设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。A A的列向量组线性无关B A的列向量组线性相关C A的行向量组线性无关D A的行向量组线性相关

考题 问答题对于迭代法xn+1=φ(x),(n=0,1,...)初始近似x0,当|φ′(x0)|1时为什么还不能断定迭代法收敛?

考题 单选题对于系数为正定对称矩阵的线性方程组,其最佳求解方法为( )A 追赶法B 平方根法C 迭代法D 高斯主元消去法)

考题 问答题设Ax=b,其中A对称正定,问解此方程组的雅可比迭代法是否一定收敛?

考题 单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。A A为方阵且|A|≠0B 导出组AX(→)=0(→)仅有零解C 秩(A)=nD 系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关