网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

32、矩阵乘法满足结合律,所以计算矩阵连乘,不同的计算次序计算量相同。


参考答案和解析
错误
更多 “32、矩阵乘法满足结合律,所以计算矩阵连乘,不同的计算次序计算量相同。” 相关考题
考题 矩阵的乘法满足____。 A.交换律B.分配律C.结合律

考题 在矩阵乘法的串行程序中,对____部分进行向量化收益最大。 A、初始化B、第二个矩阵转置循环C、矩阵元素乘—加计算的循环D、结果输出

考题 对矩阵乘法串行程序的主体三重循环,我们选择最内层循环进行向量化的原因是____。 A、它最后执行B、外层循环中没有计算操作C、是随意选择的D、它的连续循环步是对不同元素进行相同运算

考题 关于CT机中的重建矩阵,错误的说法是 ( )A.重建矩阵即显示器的显示矩阵B.实际上是衰减系数的矩阵C.视野相同时,矩阵越大,像素越小D.视野相同时,矩阵越大,图像空间分辨力越高E.在相同视野,矩阵越大,计算机工作量大

考题 已知一个无向图的邻接矩阵表示,计算第i个顶点的度的方法是______。 A、计算邻接矩阵中第i行的元素之和B、计算邻接矩阵中第i列的元素之和C、计算邻接矩阵中第i行的非零元个数D、计算邻接矩阵中第i列的非零元个数

考题 关于CT机矩阵的叙述,不正确的是A.相同扫描野中矩阵越大,计算机工作量越大B.相同扫描野中矩阵越大,图像分辨率越高C.相同采样野矩阵越大有效野越大D.是纵横二维排列的单位容积和像素E.也是衰减系数的矩阵

考题 试题四(15分)阅读下列说明和C代码,回答问题1至问题3,将解答写在答题纸的对应栏内。【说明】某工程计算中要完成多个矩阵相乘(链乘)的计算任务。两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am*n*Bn*p,需要m*n*p次乘法运算。矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110*100,A2100*5,A35*50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。矩阵链乘问题可描述为:给定n个矩阵A1,A2,….An,矩阵Ai的维数为pi-1*Pi,其中i = 1,2,….n。确定一种乘法顺序,使得这n个矩阵相乘时进行乘法的运算次数最少。由于可能的计算顺序数量非常庞大,对较大的n,用蛮力法确定计算顺序是不实际的。经过对问题进行分析,发现矩阵链乘问题具有最优子结构,即若A1*A2*…*An的一个最优计算顺序从第k个矩阵处断开,即分为A1*A2*….Ak和Ak+1*Ak+2*…*An两个子问题,则该最优解应该包含A1*A2*…*Ak的一个最优计算顺序和Ak+1*Ak+2*…An的一个最优计算顺序。据此构造递归式,其中,cost[i][j]表示Ai+1*Ai+2*...Aj+1的最优计算的计算代价。最终需要求解cost[0][n-1]。【C代码】算法实现采用自底向上的计算过程。首先计算两个矩阵相乘的计算量,然后依次计算3个矩阵、4个矩阵、…、n个矩阵相乘的最小计算量及最优计算顺序。下面是算法的C语言实现。(1)主要变量说明n:矩阵数seq[]:矩阵维数序列cost[][]:二维数组,长度为n*n,其中元素cost[i][j]表示Ai+1*Ai+2*…Aj+1的最优计算的计算代价trace[][]:二维数组,长度为n*n,其中元素trace[i][j]表示Ai+1*Ai+2*Aj+1的最优计算对应的划分位置,即k(2)函数cmmdefine N 100intcost[N][N];inttrace[N][N];int cmm(int n,int seq[]){int tempCost;int tempTrace;int i,j,k,p;int temp;for( i=0;in;i++){ cost[i][i] =0;}for(p=1;pn;p++){for(i=0; (1) ;i++){(2);tempCost = -1;for(k = i;kj;k++){temp = (3) ;if(tempCost==-1||tempCosttemp){tempCost = temp;(4) ;}}cost[i][j] = tempCost;trace[i][j] = tempTrace;}}return cost[0][n-1];}【问题1】(8分)根据以上说明和C代码,填充C代码中的空(1)~(4)。【问题2】(4分)根据以上说明和C代码,该问题采用了 (5) 算法设计策略,时间复杂度 (6) 。(用O符号表示)【问题3】(3分)考虑实例n=6,各个矩阵的维数:A1为5*10,A2为10*3,A3为3*12,A4为12*5,A5为5*50,A6为50*6,即维数序列为5,10,3,12,5,50,6。则根据上述C代码得到的一个最优计算顺序为 (7) (用加括号方式表示计算顺序),所需要的乘法运算次数为 (8) 。

考题 两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p 多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M{i+i),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为:其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(Pi-i.)*Pi采用自底向上的方法:实现该算法来确定n个矩阵相乘的顺序,其时间复杂度为( 64 )。若四个矩阵M1. M2、M3.,M4相乘的维度序列为2、6、3、10.3,采用上述算法求解,则乘法次数为( 65 )。A.O(N2)B.O(N2Lgn)C.O(N3)D.O(n3lgn)

考题 计算25×84=25×(80+4)=25×80+25×4=2100,运用的运算律是( )。A.加法结合律 B.乘法交换律 C.乘法结合律 D.乘法分配律

考题 已知矩阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pim【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为( ),算法的时间复杂度为( ),空间复杂度为(请作答此空) 给定一个实例,(POPi........P5)=(20.15.4.10.20.25)最优计算顺序为( )A.O(n^2) B.O(n*2lgn) C.O(n^3) D.O(2n)

考题 阅读下列说明和C代码,回答问题1至问题3 【说明】 某工程计算中要完成多个矩阵相乘(链乘)的计算任务。 两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数,计算量主要由进行乘法运算的次数决定。采用标准的矩阵相乘算法,计算Am×n*Bn×p,需要m*n*p次乘法运算。 矩阵相乘满足结合律,多个矩阵相乘,不同的计算顺序会产生不同的计算量。以矩阵A110×100,A2100×5,A35×50三个矩阵相乘为例,若按(A1*A2)*A3计算,则需要进行10*100*5+10*5*50=7500次乘法运算;若按A1*(A2*A3)计算,则需要进行100*5*50+10*100*50=75000次乘法运算。可见不同的计算顺序对计算量有很大的影响。 矩阵链乘问题可描述为:给定n个矩阵

考题 两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p。多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M(i+1),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为: 其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(pi-1)*pi采用自底向上的方法实现该算法来确定n个矩阵相乘的顺序,其时间复杂度为( )A.O(n2) B.O(n2lgn) C.O(n3) D.O(n3lgn)

考题 已知阳阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pi,m【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为(请作答此空),算法的时间复杂度为( ),空间复杂度为( ) 给定一个实例,(P0Pi........P5)=(20.15.4.10.20.25)最优计算顺序为( )A.分治法 B.动态规划法 C.贪心法 D.回溯法

考题 两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p。多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M(i+1),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为: 其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(pi-1)*pi采用自底向上的方法实现该算法来确定n个矩阵相乘的顺序,若四个矩阵M1、M2、M3、M4相乘的维度序列为2、6、3、10、3,采用上述算法求解,则乘法次数为( )。A.156 B.144 C.180 D.360

考题 已知矩阵 Am*n和 Bn*p 相乘的时间复杂度为 O(mnp)矩阵相乘满足结合律,如三个矩阵A、B、C 相乘的顺序可以是(A*B)*C),也可以是A*(B*C).不同的相乘序所需进行的乘法次数可能有很大的差别,因此确定n 个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定n 个短阵 A,A2........An 相乘的计算顺序具有最优子结构,即 A1A2..........An 的最优计算顺序包含其子问题A1A2.......Ak和 Ak+1Ak+2.......An(可以列出其递归式为 其中,A 的维度为 pi-1*pim【i,j】,表示 AiAi+1…A j最优计算顺字的相乘次数, 先釆用自底向上的方法求n 个矩阵相乘的最优计算顺序。则该问题的算法设计策略为( ),算法的时间复杂度为( ),空间复杂度为( ) 给定一个实例,(POPi........P5)=(20.15.4.10.20.25)最优计算顺序为(请作答此空)A.(((A1*A2)*A3)*A4)*A5 B.A1*(A2*(A3*(A4*A5))) C.((A1*A2)*A3)*(A4*A5) D.(A1*A2)*((A3*A4)*A5)

考题 潮流计算是以导纳矩阵为计算基础的。

考题 矩阵的乘法规则不满足传统的乘法交换律。

考题 矩阵乘法有一个奇特的性质:不符合传统乘法的()。A、分配律B、交换律C、结合律D、消去律

考题 定额中遇有两个或两个以上系数时,按()计算。A、乘法B、连乘法C、加法D、连加法

考题 矩阵的组合特性是矩阵乘法满足结合率,不满足交换率,即进行连续变换时一定要按变换次序对变换矩阵求积后才得到总的变换矩阵。

考题 创建一个4阶魔术矩阵A与单位矩阵B,并分别计算两矩阵之和、矩阵相乘、矩阵点乘、A矩阵乘方、A矩阵装置。

考题 使用连乘法计算,如果结果大于1,则证明存在可套利的路径。

考题 能用乘法结合律计算的式子是()。A、0.18³3+0.82³3B、16.5+23.5+4.9+1.1C、0.125³72³8

考题 矩阵的乘法不满足哪一规律?()A、结合律B、分配律C、交换律D、都不满足

考题 矩阵乘法不满交换律也不满足结合律。

考题 判断题矩阵的组合特性是矩阵乘法满足结合率,不满足交换率,即进行连续变换时一定要按变换次序对变换矩阵求积后才得到总的变换矩阵。A 对B 错

考题 判断题矩阵乘法不满交换律也不满足结合律。A 对B 错

考题 单选题矩阵的乘法不满足哪一规律?()A 结合律B 分配律C 交换律D 都不满足