网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.


参考答案

参考解析
解析:
更多 “设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.” 相关考题
考题 线性方程组Ax=o只有零解的充分必要条件是() A、A的行向量组线性无关B、A的行向量组线性相关C、A的列向量组线性无关D、A的列向量组线性相关

考题 设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2).(1)求该向量组的一个极大线性无关组;

考题 (2)将其余向量表示为该极大线性无关组的线性组合.

考题 什么是向量组的极大线性无关组?

考题 设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

考题 设A,B为满足AB=0的任意两个非零矩阵,则必有(56)。A.A的列向量组线性相关,B的行向量组线性相关B.A的列向量组线性相关,B的列向量组线性相关C.A的行向量组线性相关,B的行向量组线性相关D.A的列向量组线性相关,B的列向量组线性相关

考题 设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 求向量组的秩和一个极大线性无关组,并把其余向量用此极大线性无关组线性表示。

考题 求向量组的一个极大无关组,并把其余向量用极大无关组线性表示。

考题 已知四维列向量线性无关,则下列向量组中线性无关的是

考题 求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合

考题 设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.

考题 设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。

考题 设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。 A、矩阵A的任意两个列向量线性相关 B、矩阵A的任意两个列向量线性无关 C、矩阵A的任一列向量是其余列向量的线性组合 D、矩阵A必有一个列向量是其余列向量的线性组合

考题 设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充要条件是( )。A.A的列向量组线性无关 B.A的列向量组线性相关 C.A的行向量组线性无关 D.A的行向量组线性相关

考题 若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

考题 设n阶方阵M的秩r(M)=rA.任意一个行向量均可由其他r个行向量线性表示 B.任意r个行向量均可组成极大线性无关组 C.任意r个行向量均线性无关 D.必有r个行向量线性无关

考题 设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关 B.方程组AX=b有无穷多解 C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关 D.A的任意4个列向量构成的向量组线性无关

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设向量组α(→)1,α(→)2,…,α(→)r(Ⅰ)是向量组α(→)1,α(→)2,…,α(→)s(Ⅱ)的部分线性无关组,则(  )。A (Ⅰ)是(Ⅱ)的极大线性无关组B r(Ⅰ)=r(Ⅱ)C 当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D 当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

考题 单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是(  )。[2017年真题]A 矩阵A的任意两个列向量线性相关B 矩阵A的任意两个列向量线性无关C 矩阵A的任一列向量是其余列向量的线性组合D 矩阵A必有一个列向量是其余列向量的线性组合

考题 单选题设A为4×5矩阵,且A的行向量组线性无关,则(  )。A A的列向量组线性无关B 方程组AX(→)=b(→)有无穷多解C 方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关D A的任意4个列向量构成的向量组线性无关

考题 单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价

考题 填空题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是____。

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。