网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。
- A、1
- B、2
- C、3
- D、0
参考答案
更多 “设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。A、1B、2C、3D、0” 相关考题
考题
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是()。
A、a1-a2,a2-a3,a3-a1B、a1,a2,a3+a1C、a1,a2,2a1-3a2D、a2,a3,2a2+a3
考题
A.过点(0,-2,1),方向向量为2i-j-3k
B.过点(0,-2,1),方向向量为-2i-j+3k
C.过点(0,2,-1),方向向量为2i+j-3k
D.过点(O,2,-1),方向向量为-2i+j+3k
考题
向量α=(2,1,-1),若向量β与α平行,且α·β=3,则β为( )。
A.(2,1,-1)
B.(3/2,3/4,-3/4)
C.(1,1/2,-1/2)
D.(1,-1,1/2)
考题
设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于( ).A.1
B.2
C.3
D.任意数
考题
设直线的方程为则直线:
(A)过点(1,-1,0),方向向量为2i + j-k
(B)过点(1,-1,0),方向向量为2i - j + k
(C)过点(-1,1,0),方向向量为-2i - j + k
(D)过点(-1,1,0),方向向量为2i + j - k
考题
设向量组α1=(1,0,1)T,α2=(0,1,1)T,a3=(1,3,5)T,不能由向量组β1,=(1,1,1)T,f12=(1,2,3)T,3β=(3,4,α)T线性表示。
(1)求a的值;
(2)将β1β2β2由α1α2α3线性表示。
考题
设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。A、1B、2C、3D、4
考题
单选题设向量组A:a1=(1,0,5,2),a2=(-2,1,-4,1),a3=(-1,1,t,3),a4=(-2,1,-4,1)线性相关,则t必定等于().A
1B
2C
3D
任意数
考题
问答题设向量组(Ⅰ)α(→)1,α(→)2,…,α(→)s;(Ⅱ)β(→)1,β(→)2,…,β(→)t;(Ⅲ)α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t的秩依次为r1,r2,r3。证明:max(r1,r2)≤r3≤r1+r2。
考题
问答题设向量组(Ⅰ)α1,α2,…,αs.(Ⅱ)β1,β2,…,βt.(Ⅲ)α1,α2,…,αs,β1,β2,…,βt.的秩依次为r1,r2,r3.证明:max(r1,r2)≤r3≤r1+r2.
考题
单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是( )。[2013年真题]A
α2,α4B
α3,α4C
α1,α2D
α2,α3
考题
单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。A
α2,α4B
α3,α4C
α1,α2D
α2,α3
考题
单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则( )。A
此两个向量组等价B
秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC
当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D
s=t时,二向量组等价
热门标签
最新试卷