网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
在开区间内连续的函数在该开区间内一定存在最值.
参考答案和解析
正确
更多 “在开区间内连续的函数在该开区间内一定存在最值.” 相关考题
考题
在公式中yxp(x,y)),存在量词是在全称量词的辖域内,我们允许所存在的x可能依赖于y值。令这种依赖关系明显地由函数所定义,它把每个y值映射到存在的那个x。这种函数叫做()
A.依赖函数B.Skolem函数C.决定函数D.多元函数
考题
若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。
考题
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。
A.必存在且只有一个
B.至少存在一个
C.不一定存在
D.不存在
考题
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0
B.(x-a)[f(x)-f(a)]≤0
C.
D.
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
罗尔定理:设函数(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)(a)=(b),则在(a,b)内至少存在一点ξ,使得,′(ξ)=0。证明这个定理并说明其几何意义。
考题
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值
B.f(x)在(a,b)上必一致连续
C.f(x)在(a,b)上必有
D.f(x)在(a,b)上必连续
考题
设?(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )A.(x)在(a,b)上必有最大值
B.(x)在(a,b)上必一致连续
C.(x)在(a,b)上必有界
D.(x)在(a,b)上必连续
考题
在公式中yxP(x,y),存在量词是在全称量词的辖域内,我们允许所存在的x可能依赖于y值。令这种依赖关系明显地由函数所定义,它把每个y值映射到存在的那个x。这种函数叫做()A、依赖函数B、Skolem函数C、决定函数D、多元函数
考题
以下对约束问题的最优值f(X*)叙述正确的是()。A、不定是目标函数的自然最小值B、一定是目标函数的自然最小值C、是在约束条件限定下的最小值D、是在约束条件限定的可行域内的最小值E、是目标函数可行域内的最小值
考题
问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。
考题
单选题在公式中yxP(x,y),存在量词是在全称量词的辖域内,我们允许所存在的x可能依赖于y值。令这种依赖关系明显地由函数所定义,它把每个y值映射到存在的那个x。这种函数叫做()A
依赖函数B
Skolem函数C
决定函数D
多元函数
考题
多选题以下对约束问题的最优值f(X*)叙述正确的是()。A不定是目标函数的自然最小值B一定是目标函数的自然最小值C是在约束条件限定下的最小值D是在约束条件限定的可行域内的最小值E是目标函数可行域内的最小值
考题
问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明: (1)存在η∈(a,b)使f(η)=g(η); (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。
考题
问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。
热门标签
最新试卷