网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

1、若矩阵A经过初等变换化为B, 则称矩阵A与B等价.


参考答案和解析
ABCD
更多 “1、若矩阵A经过初等变换化为B, 则称矩阵A与B等价.” 相关考题
考题 下列结论或等式正确的是()。 A.若A,B均为零矩阵,则有A=BB.矩阵乘法满足交换律,则(AB)k=AkBkC.对角矩阵是对称矩阵D.若A≠0,B≠0,则AB≠0

考题 矩阵A( )时可能改变其秩.A.转置: B.初等变换: C.乘以奇异矩阵: D.乘以非奇异矩阵.

考题 初等矩阵( ) A.都可以经过初等变换化为单位矩阵 B.所对应的行列式的值都等于1 C.相乘仍为初等矩阵 D.相加仍为初等矩阵

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ). A.①③ B.②④ C.②③ D.③④

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 设A是实对称矩阵,C是实可逆矩阵,.则( ). A.A与B相似 B.A与B不等价 C.A与B有相同的特征值 D.A与B合同

考题 N阶矩阵A经过若干次初等变换化为矩阵B,则().A.|A|=|B| B.|A|≠|B| C.若|A|=0则|B|=0 D.若|A|>0则|B|>0

考题 设n阶矩阵A与B等价, 则必须

考题 设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵, 若矩阵Q=(a1,a2,a3),则Q-1AQ=

考题 证明:若矩阵A可逆,则其逆矩阵必然唯一.

考题 利用矩阵的初等变换,求方阵的逆

考题 设矩阵与等价,则a=

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 若A,口是正交矩阵,则下列说法错误的是( )。 A、AB为正交矩阵 B、A+B为正交矩阵 C、A-1B为正交矩阵 D、AB-1为正交矩阵

考题 设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。

考题 设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )

考题 矩阵A在( )时秩改变.A.转置 B.初等变换 C.乘以奇异矩阵 D.乘以非奇异矩阵

考题 若A,B是正交矩阵,则下列说法错误的是()。A、AB为正交矩阵B、A+B为正交矩阵C、ATB为正交矩阵D、AB-1为正交矩阵

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 若一个n阶矩阵A中的元素满足:Aij=Aji(0=I,j=n-1)则称A为()矩阵;若主对角线上方(或下方)的所有元素均为零时,称该矩阵为()。

考题 对于所有非零向量X,若XTMX0,则二次矩阵M是()。A、三角矩阵B、负定矩阵C、正定矩阵D、非对称矩阵E、对称矩阵

考题 单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A 等价B 相似C 合同D 正交

考题 单选题若A,B是正交矩阵,则下列说法错误的是()。A AB为正交矩阵B A+B为正交矩阵C ATB为正交矩阵D AB-1为正交矩阵

考题 单选题设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。A |A|=|B|B |A|≠|B|C 若|A|=0,则一定有|B|=0D 若|A|>0,则一定有|B|>0

考题 单选题矩阵A在(  )时秩改变。A 转置B 初等变换C 乘以奇异矩阵D 乘以非奇异矩阵

考题 填空题若一个n阶矩阵A中的元素满足:Aij=Aji(0=I,j=n-1)则称A为()矩阵;若主对角线上方(或下方)的所有元素均为零时,称该矩阵为()。