考题
周期连续信号的频率描述应用()对信号进行分解。
A、拉式变换B、傅里叶变换C、相关函数D、傅里叶级数
考题
非正弦周期信号的分解可用什么方法实现:()A.傅里叶变化;B.傅里叶变换;C.傅里叶级数展开;D.傅里叶卷积
考题
用有限项傅里叶级数表示周期信号,吉布斯现象是不可避免的。()
此题为判断题(对,错)。
考题
傅里叶级数中的系数表示谐波分量的( )。
A: 相位B: 周期C: 振幅D: 频率
考题
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值()A越大B越小C不变D不一定
考题
大多数非正弦周期函数的傅里叶级数都已被算出。()
考题
一般周期信号可以利用傅里叶级数展开成()不同频率的谐波信号的线性叠加。
A、两个B、多个乃至无穷多个C、偶数个D、奇数个
考题
傅里叶级数展开中,包含正弦分量,则原信号必为奇函数。()
此题为判断题(对,错)。
考题
周期信号f(t)=-f(t±T/2),(T—周期),下列哪些不是其傅里叶级数展开式的结构特点()。
A、只有正弦项B、只有余弦项C、只含偶次谐波D、只含奇次谐波
考题
若周期信号f(t)是时间t的奇函数,则其三角形傅里叶级数展开式中()。
A.没有余弦分量B.既有正弦分量和余弦分量,又有直流分量C.既有正弦分量和余弦分量D.仅有正弦分量
考题
某周期为T的非正弦周期信号分解为傅里叶级数时,其三次谐波的角频率为300πrad/s,则该信号的周期T为( )s。A.50
B.0.06
C.0.02
D.0.05
考题
任意给出几种常见的非正弦周期信号波形图,能否确定其傅里叶级数展开式中有无恒定量?( )A.不能
B.能
C.不确定
D.分情况讨论
考题
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越( )A.大
B.小
C.无法判断
考题
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值( )。A.越大
B.越小
C.无法确定
D.不变
考题
任意给出几种常见的非正弦周期信号波形图,你能否确定其傅里叶级数展开式中有无恒定分量()A、不能B、能C、不确定
考题
周期信号的傅氏三角级数中的n是从()到()展开的。傅氏复指数级数中的n是从()到()展开的。
考题
周期性非正弦波的傅里叶级数展开式中,谐波的频率越高,其幅值越()A、大B、小C、无法判断
考题
周期为丁的非正弦信号可以分解为傅里叶级数的条件为()。A、满足狄利赫利条件B、无条件C、必须平均值为零
考题
周期信号的频谱图有何特点?其傅里叶级数三角函数展开式与复指数函数展开式的频谱有何特点?
考题
复杂的周期信号可借助傅里叶级数展开成一系列的离散的简谐分量之和,其中任两个分量的()都是有理数.
考题
复杂的周期信号可借助傅里叶级数展开成(),其中任两个分量的频率比都是有理数.
考题
填空题傅里叶级数是傅里叶在研究哪种物理现象时提出的?()
考题
填空题傅里叶级数是傅里叶在研究()现象时提出的
考题
填空题复杂的周期信号可借助傅里叶级数展开成(),其中任两个分量的频率比都是有理数.