网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
多选题
在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。你认为这种教学有何弊端?()
A

抑制学生学习的主动性、独立性

B

学生的思维和想象力被扼杀

C

导致学生学习的主体地位缺失

D

增强教师的教学能力


参考答案

参考解析
解析: 暂无解析
更多 “多选题在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。你认为这种教学有何弊端?()A抑制学生学习的主动性、独立性B学生的思维和想象力被扼杀C导致学生学习的主体地位缺失D增强教师的教学能力” 相关考题
考题 两个面积相等的三角形可以拼成一个平行四边形。此题为判断题(对,错)。

考题 根据下列材料,请回答 44~45 题:在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。第 44 题 你认为该老师的作法( )。A.正确B.不正确

考题 教学设计一:在教学求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。教学设计二:教师引导学生分析问题,即如何把一个平行四边形转变成一个长方形,然后组织学生自主探究,并获得计算平行四边形面积的公式。问题:两则教学设计中教师的教学方法有何不同?两种教学方法对学生的学习将产生怎样的影响?

考题 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是( )A.4 B.4.5 C.5 D.5.5

考题 一个平行四边形和一个三角形等底等高。已知平行四边形的面积是30cm²,三角形的面积是多少?

考题 在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师列举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。你认为这种教学有何弊端?( )A.抑制学生学习的主动性、独立性B.学生的思维和想象力被扼杀C.导致学生学习的主体地位缺失D.增强教师的教学能力

考题 以下是求三角形面积的程序:PublicFunctionarea(x!,y!,z!)AsSingleDimc!If(x+y>zAndx+zzAndx+zyAndy+zx) And (Abs(x-y))Thenc=1/2*(x+y+z)area=Sqr(c*(c-x)*(c-y)*(c-z))ElseMsgBox你输入的三角形三边不符和三角形组成的条件,请重新输入三边EndIfEndFunctionPrivateSubForm_Click()Dima!,b!,c!a=InputBox(输入a):b=InputBox(输入b):c=InputBox(输入c)s1=area(a,b,c)Print三角形的面积=;s1EndSub以下说法正确的是( )A.当程序运行时单击窗体后分别输入3,4和5,显示对话框你输入的三角形三边不符和三角形组成的条件,请重新输入三边B.当程序运行时单击窗体后分别输入3,4和5,输出显示三角形的面积=6C.当程序运行时单击窗体后分别输入3,4和5,输出显示三角形的面积=6.5D.以上说法都不正确

考题 编写程序,输入三角形的边长,求三角形的面积。

考题 求三角形ABC的实形。 (换面法)

考题 用铁皮剪成两个三角形:(1)如果剪成顶角相等,并且有一条腰相等的两个等腰三角形,则它们全等;(2)如果都有一个角等于42°,且有两边相等,则它们全等;(3) 如果在剪成的⊿ABC和⊿A1B1C1中,∠C=∠C1=90°,那么不论是BC=B1C1,AC=A1C1,还是BC=B1C1,AC=B1C1,剪的两个三角形都全等。 上面说法中,正确的是( )。A.(1)B.(1)(2)C.(2)(3)D.(1)(3)

考题 某三角形的三边长分别为3、4、5,则该三角形的面积与周长之比为( )。A.2:1B.3:1C.1:2D.1:3

考题 如图,在长方形ABCD中,已知三角形ABE、三角形ADF与四边形AECF的面积相等,则三角形AEF与三角形CEF的面积之比是 A.5∶1 B.5∶2 C.5∶3 D.2∶1

考题 用铁皮剪成两个三角形: ①如果剪成顶角相等,并且有一条腰相等的两个等腰三角形,则它们全等。 ②如果都有一个角等于42°,且有两边相等,则它们全等。 ③如果在剪成的△ABC和△A1B1C1中,∠C=∠C1=90°,那么不论是BC=B1C1,AC=A1C1,还是BC=B1C1,AC=B1C1,剪的两个三角形都全等。 上面说法中,正确的是()。 A. ① B. ①② C. ②③ D. ①③

考题 分角线投照技术的基本设计原理是根据共边三角形内若有两个角相等,则A.这两个三角形垂直原理 B.这两个三角形相似原理 C.这两个三角形平行原理 D.这两个三角形全等原理 E.以上都不对

考题 如图,在平行四边形ABCD中,已知三角形ABP、BPC的面积分别是73、100,那么三角形BPD的面积是多少? A.27 B.36.5 C.50 D.无法确定

考题 在相似三角形的判定的复习课上,甲乙两位教师分别设计了如下的教学片段: (甲教师) 问题引入:如图1,在△ABC中,D、E分别是AB、AC上的两点,请你另外添加一个条件,使△ABC∽△ADE,并说明添加条件的理由。 预设学生回答。 (1) 添加一个条件,∠ADE=∠B (2) 添加一个条件,∠AED=∠C (5)依次说出判定方法和理由。 (乙教师) 教师提问:判定三角形相似有哪些方法? 预设学生回答: (1)两角分别相等的两个三角形相似; (2)两边成比例且夹角相等的两个三角形相似; (3)三边成比例的两个三角形相似。 针对上述材料,完成下列任务。 (1)请分别对两位教师的教学设计片段进行评价,并简述理由。(10分) (2)为了进一步巩固三角形相似的判定定理,请设计开放性的例题和习题各一个,并简述理由。(10分) (3)简述数学教学中例题和习题设计的注意事项。(10分)

考题 在相似三角形的判定的复习课上.甲乙两位教师分别设计了如下的教学片段: (甲教师) 问题引入:如图1,在△ABC中,D、E分别是AB、AC上的两个点,请你另外添加一个条件,使△ABC—AADE.并说明添加条件的理由。 预设学生回答。 (1)添加一个条件 (2)添加一个条件 (3)添加一个条件 (4)添加一个条件 (5)…………依次说出判定方法和理由。 (乙教师) 教师提问:判定三角形相似有哪些方法 预设学生回答: (1)两角分别相等的两个三角形相似; (2)两边成比例且夹角相等的两个三角形相似; (3)三边成比例的两个三角形相似。 针对上述材料,完成下列任务。 (1)请分别对两位教师的教学设计片段进行评价,并简述理由。(10分) (2)为了进一步巩固三角形相似的判定定理,请设计开放性的例题和习题各一个,并简述理由。(10分) (3)简述数学教学中例题和习题设计的注意事项。(10分)

考题 如图2,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依次类推,第2008个三角形的周长为( )

考题 如下图,把三角形ABC 的三边分别延长1、2、3 倍,得到一个新的三角形,则新三角形的面积是原三角形ABC 面积的几倍?( ) A、15 B、16 C、17 D、18

考题 计算题:已知三角形的三条边分别为7m、8m、9m,求该三角形面积?

考题 单选题已知集合S={a,b,c}中的三个元素可构成△ABC三边的长,那么△ABC一定不是(  ).A 锐角三角形B 钝角三角形C 直角三角形D 等腰三角形

考题 单选题“二阶行列式”可以理解为:()。A 平行四边形面积B 三角形面积C 平行四边形周长D 三角形周长

考题 单选题下列命题中,正确的个数是(  ).①等边三角形都相似;②直角三角形都相似;③等腰三角形都相似;④锐角三角形都相似;⑤等腰三角形都全等;⑥有一个角相等的等腰三角形相似;⑦有一个钝角相等的两个等腰三角形相似;⑧全等三角形相似.A 2个B 3个C 4个D 5个

考题 单选题已知三角形内的一个点到它的三边距离相等,那么这个点是(  ).A 三角形的外心B 三角形的重心C 三角形的内心D 三角形的垂心

考题 单选题张老师是一名小学数学教师,他想讲授三角形形状与内角和之间的变化,以下哪些描述更适合他使用()A 使用几何画板动态演示三角形变化与内角和之间的关系B 让学生在几何画板中体验三角形形状与内角和之间的关系C 提供多种三角形形状,让学生探索三角形形状与内角和之间的关系D 提供一些资源,让学生证明三角形内角和与形状间的关系

考题 单选题一个三角形和一个平行四边形,面积相等,底也相等,那么三角形和平行四边形的高相比较().A 三角形的高是平行四边形的一半B 相等C 三角形的高是平行四边形的2倍

考题 问答题教学设计一:在教学生求平行四边形面积时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师举出很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都正确解决了。下课前,教师又布置了十几个类似的问题作为家庭作业。 教学设计二:教师引导学生分析问题,即如何把一个平行四边形转变成一个长方形,然后组织学生自主探究,并获得计算平行四边形面积的公式。 请问:两则教学设计中教师的教学方法有何不同?两种教学方法对学生的学习将产生怎样的影响?

考题 问答题教学设计一在教";求平行四边形面积";一课时,教师讲授如下:连接AC,因为三角形ABC与三角形CDA的三条边分别相等,所以,这两个三角形全等,三角形ABC的面积等于1/2底乘高,所以,平行四边形ABCD的面积等于底乘高,命题得到证明。然后,教师举了很多不同大小的平行四边形,要求学生求出它们的面积,结果每个问题都得到正确解决。下课前,教师又布置了十几个类似的问题作为家庭作业。教学设计二教师引导学生分析问题,即如何把一个平行四边形变成一个长方形.然后组织学生自主探究,并获得计算平行四边形面积的公式。两则教学设计中教师的教学方法有何不同?两种教学方法对学生的学习将产生怎样的影响?