网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

矩阵的列秩是矩阵列向量组的秩.


参考答案和解析
正确
更多 “矩阵的列秩是矩阵列向量组的秩.” 相关考题
考题 没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。 A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵

考题 满秩方阵的列向量组线性无关。() 此题为判断题(对,错)。

考题 两组独立样本比较秩和检验编秩次的方法是A.按两组数值之差编秩次B.两组数值分别编秩次C.按两组数值的大小统一编秩次D.只对一组数值编秩次E.一组由小到大编秩次,另一组由大到小编秩次

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是A.① ② B.① ③ C.② ④ D.③ ④

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解 A.① ② B.① ③ C.② ④ D.③ ④

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 向量组的秩等于( )。A、1 B、2 C、3 D、4

考题 下列结论中正确的是(  )。 A、 矩阵A的行秩与列秩可以不等 B、 秩为r的矩阵中,所有r阶子式均不为零 C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零 D、 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 求下列向量组的秩,并求一个最大无关组:.

考题 设向量组,,若此向量组的秩为2,求的值。

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

考题 设α,β为三维列向量,矩阵A=αα^T+ββ^T,其中α^T,β^T分别是α,β的转置.证明:   (Ⅰ)秩r(A)≤2;   (Ⅱ)若α,β线性相关,则秩r(A)

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 设α为三维单位列向量,E为三阶单位矩阵,则矩阵E-αα^T的秩为________.

考题 设A为三阶实对称矩阵,A的秩为2,且   (Ⅰ)求A的所有特征值与特征向量;   (Ⅱ)求矩阵A.

考题 设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

考题 设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A) B.秩(C)=秩(B) C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等 D.若秩(A)=秩(B)=r,则秩(C)=r

考题 线性规划标准型的系数矩阵Am×n,要求()A、秩(A)=m并且mnB、秩(A)=m并且m≤nC、秩(A)=m并且m=nD、秩(A)=n并且nm

考题 单选题没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。A A的秩等于nB A的秩不等于0C A的行列式值不等于0D A存在逆矩阵

考题 单选题设向量组Ⅰ:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组Ⅱ:α(→)1,α(→)2,…, α(→)m,β(→),其秩为s,则r=s是向量组Ⅰ与向量组Ⅱ等价的(  )。A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件

考题 单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的(  )。A 充分非必要条件B 必要非充分条件C 充分必要条件D 既非充分也非必要条件

考题 单选题设向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可以由α1,…,αs线性表示,则(  ).A 向量组α1+β1,α2+β2,…,αs+βs的秩为r1+r2B 向量组α1-β1,α2-β2,…,αs-βs秩为rl-r2C 向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl+r2D 向量组α1,α2,…,αs,β1,β2,…,βs的秩为rl

考题 单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。A A为方阵且|A|≠0B 导出组AX(→)=0(→)仅有零解C 秩(A)=nD 系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关

考题 单选题设α(→)1,α(→)2,…,α(→)s和β(→)1,β(→)2,…,β(→)t为两个n维向量组,且秩(α(→)1,α(→)2,…,α(→)s)=秩(β(→)1,β(→)2,…,β(→)t)=r,则(  )。A 此两个向量组等价B 秩(α(→)1,α(→)2,…,α(→)s,β(→)1,β(→)2,…,β(→)t)=rC 当α(→)1,α(→)2,…,α(→)s可以由β(→)1,β(→)2,…,β(→)t线性表示时,此二向量组等价D s=t时,二向量组等价

考题 单选题线性规划标准型的系数矩阵Am×n,要求()A 秩(A)=m并且mnB 秩(A)=m并且m≤nC 秩(A)=m并且m=nD 秩(A)=n并且nm

考题 单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式